If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+50X-1500=0
a = 1; b = 50; c = -1500;
Δ = b2-4ac
Δ = 502-4·1·(-1500)
Δ = 8500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8500}=\sqrt{100*85}=\sqrt{100}*\sqrt{85}=10\sqrt{85}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{85}}{2*1}=\frac{-50-10\sqrt{85}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{85}}{2*1}=\frac{-50+10\sqrt{85}}{2} $
| 3x2-3x=x-1 | | 8(5g+5-2)=40g+24 | | 4*1-y=4,y | | (n+4)/(n-3)=1/2+1/(n-3) | | 4*0-y=4,y | | 6x+12+4x+45=180 | | 0=-x^2+16x-30 | | 59+13x+7=180 | | 2t+6=9 | | 4*2-2y=0,y | | 4*1-2y=0,y | | 4-3x=-77 | | 0=(20-2x)(16-2x) | | 59+(13x+7)=180 | | R=-2c+64 | | 4*0-2y=0,y | | 3-y=-15,y | | 4(k-6=6(k+2 | | 2-y=-15,y | | x+41+90=180 | | 1-y=-15,y | | X^2-18x+60=-21 | | 0-y=-15,y | | -1=-3+2u | | 5x+12+35-8x=6x+38 | | 8.7x-16.4=35.8 | | 4*3-4y=24,y | | 4*2-4y=24,y | | 4*1-4y=24,y | | 4*0-4y=24,y | | 5z+17=4z+3 | | 5z—6=41 |